104/1(Sc)

UG-II/Math.-II(G)/20

2020

MATHEMATICS [GENERAL]

Paper: II

Full Marks: 100

Time: 3 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Symbols have their usual meanings.

GROUP-A

(Classical, Abstract and Linear Algebra)

[Marks : 50]

1. Answer any **two** questions:

 $1\times2=2$

- a) Give an example of symmetric relation.
- b) Find amplitude of -1-i.
- c) If $A = \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix}$, find $A^2 3A 13I$.
- d) Express 1+i in the form of $r(\cos\theta + i\sin\theta)$

2. Answer any **five** questions:

- $2\times5=10$
- a) If the function $f: R \to R$ be defined by $f(x)=x^2+1$? Find $f^{-1}(17)$.
- b) Without expending find the value of

- If the roots of the equation $x^3-px^2+qx-r=0$ are in G.P, show that $q^3=p^3r$.
- d) Find the remainder when $f(x)=x^3+5x^2+7x+2$ is divided by x-1.

e) If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 6 & 7 & 8 \\ 6 & -3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 2 \\ 5 & 6 & 1 \end{bmatrix}$, verify $(AB)^T = B^T A^T$.

- f) Prove that amp $(z_1, z_2) = amp(z_1) + amp(z_2)$
- g) Determine the number of positive and negative real roots of the education

$$x^5 + 4x^4 - 3x^2 + x - 6 = 0$$

- 3. Answer any **three** questions: $6 \times 3 = 18$
 - a) Prove that in a group (G, *) the equations a*x = b and y*a = b have unique solutions.

104/1(Sc)

- b) Solve x^3 –6x–9=0 by Cardons method.
- c) Prove that if R bearing with unity element 1, then this is the unique multiplicative identity.
- d) If $z_r = \cos \frac{\pi}{3^r} + \sin \frac{\pi}{3^r}$. Prove that $z_1, z_2, z_3, \dots \infty = i$.
- e) Prove that the set G with an operation *, which is defined by $x * y = \frac{x+y}{xy+1}$, forms an Abelian group.
- 4. Answer any **two** questions:

 $10 \times 2 = 20$

a) i) Find the rank of the matrix

$$\begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 2 & -2 & 2 \end{bmatrix}.$$

- ii) Prove that if two rows or two columns of a determinant are identical then the value of the determinant is zero.
- b) i) Show that the group given by the following table is cycle

*	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a.

- ii) Show that the vectors (1,0,0), (0,1,0), (0,0,1) and (1,2,3) generate the same space as generated by the vectors (1,0,0), (0,1,0), (0,0,1).
- c) Find the eigenvalues and corresponding eigenvector of the matrix

$$\begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix}$$

GROUP-B

(Analytical Geometry and Vector Algebra)

[Marks : 50]

5. Answer any **four** questions:

 $1\times4=4$

- a) If $\overline{a} = 2\hat{i} + 3\hat{j} + 5\hat{k}$ and $\overline{b} = 3\hat{i} + 2\hat{j} + \hat{k}$, find $\overline{a}.\overline{b}$.
- b) Can the numbers $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$ be the direction cosine of a straight line?
- Transform the equation $x^2-y^2+4x+6y+1=0$ it the once transform into parallel ones passing through the point (2, -1).
- d) For any vectors $\overline{a} = x\hat{i} + y\hat{j} + z\hat{k}$ and $\overline{b} = p\hat{i} + q\hat{j} + r\hat{k}$ calculate $|\overline{a} \times \overline{b}|$.

104/1(Sc)

[3]

[Turn over]

- e) Prove that $4x^2 + 9y^2 + 12xy + 4x + 6y + 1 = 0$ represents pair of straight lines.
- f) Write perpendicular distance from (x_0, y_0) to ax + by + c = 0.
- 6. Answer any **six** questions: $2 \times 6 = 12$
 - a) For any two vectors \overline{a} and \overline{b} if $\left| \overline{a} + \overline{b} \right| = \left| \overline{a} \overline{b} \right|$ prove that \overline{a} and \overline{b} are perpendicular to each other.
 - b) Find the radius of the circle $x^2+y^2+z^2=25$, x+2y+2z+9=0.
 - c) Whatever be the value α , prove that locus of the intersection of the straight lines $x \cos \alpha + y \sin \alpha = a$ and $x \sin \alpha y \cos \alpha = b$ is a circle.
 - d) If PSP' be the focal chord of the conic $\frac{l}{r} = 1 e \cos \theta$, show that $\frac{1}{SP} + \frac{1}{SP'} = \frac{2}{l}$, where the rotations have usual meanings?
 - e) When two vectors \overline{a} and \overline{b} are called linearly independent?
 - f) Find the polar and parametric form of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

- Find the equation of the line passing through (x_1, y_1, z_1) and (x_2, y_2, z_2) .
- h) Find the unit vector perpendicular to both 2i j + 4k and i + j + k.
- 7. Answer any **four** questions: $6 \times 4 = 24$
 - a) Find the distance of the point (2, 3, -1) from the line $\frac{x-1}{-2} = \frac{y+5}{-1} = \frac{z+15}{2}$.
 - b) Show that the equation

$$8x^2+8xy-6y^2-2x-11y=3$$

represents a pain of interesting straight line and the angle between them is $tan^{-1}(\delta)$.

- c) If by a rotation of co-ordinate axes the expression $ax^2+2hxy+by^2$ changes to $a'x'^2+2h'x'y'+b'y'^2$ show that a+b=a'+b'.
- d) Show that for any vector $\overline{\mathbf{a}}$ can be expressed as $\overline{\mathbf{a}} = (\overline{\mathbf{a}}.\hat{\mathbf{i}})\hat{\mathbf{i}} + (\overline{\mathbf{a}}.\hat{\mathbf{j}})\hat{\mathbf{j}} + (\overline{\mathbf{a}}.\hat{\mathbf{k}})\hat{\mathbf{k}}$.
- e) If l_1, m_1, n_1 and l_2, m_2, n_2 are the direction cosine of two perpendicular lines, then show that $(l_1 + l_2)^2 + (m_1 + m_2)^2 + (n_1 + n_2)^2 = 2$.
- f) Find the equation of the plane through (2, 1, 0) and perpendicular to 2n-4y+3z=2 and x+y+z=5.

- 8. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Resolve a vector \overline{r} in the direction of three non-coplanar vectors \overline{a} , \overline{b} , \overline{c} .
 - ii) Find the equation of a sphere passing through four non-coplanar points

$$(\boldsymbol{x}_{1},\boldsymbol{y}_{1},\boldsymbol{z}_{1}),(\boldsymbol{x}_{2},\boldsymbol{y}_{2},\boldsymbol{z}_{2}),(\boldsymbol{x}_{3},\boldsymbol{y}_{3},\boldsymbol{z}_{3}),(\boldsymbol{x}_{4},\boldsymbol{y}_{4},\boldsymbol{z}_{4}).$$

- b) i) Show that the circle $x^2 + y^2 + z^2 3x y + z = 5$, x y 2z = 0 and $x^2 + y^2 + z^2 + 4x + 2y + 2z = 5$, x + y + z + 1 = 0 lie on a common sphere.
 - ii) Show that the points (1, 0,1) (2, -1, 2), (3, 4, 5) and (1, -1, -1) are non-coplanar. Hence find the distance of the fourth point from the plane passing through the first three points.

Hence find the equation of the sphere.

5+5